Wednesday, September 8, 2010

Beans Should Be Deprecated - The Future of Object Architecture With Properties (Part 2 of 2)

In part 1 we discussed the basics of properties in Sgine, how to listen for events, what a delegate property is, how to filter properties, transactions with properties, and animation. In this part we will conclude our tutorial of properties in Sgine with a discussion of paths in properties, binding support, property containers, dependent property, and advanced property.

Path-based Properties


In Sgine there is a unique path system. However, this is not a typical path system because it represents object paths, not filesystem paths. In the org.sgine.path package there is a class called OPath (object path) that can represent the hierarchical path to an object. So, for example, take the following code:
import org.sgine.property.MutableProperty

class Person {
    val addresses = new MutableProperty[Addresses]
}

class Addresses {
    val billing = new MutableProperty[Address]
    val shipping = new MutableProperty[Address]
}

class Address {
    val line1 = new MutableProperty[String]
}

Now, presume I have a reference to an instance of a person object, and I want to listen for any changes to address line1 on the shipping address. This is difficult as "addresses" is mutable, "shipping" is mutable, and "line1" is mutable. So, if I do the following:
person.addresses().shipping().line1.listeners += shippingLine1Changed _
I may get a NullPointerException because something isn't initialized, or I may connect up, but when any one of the mutable chains in-between break I'm now referencing the wrong data. This is where OPath comes in. I can pass a root reference and a path as a String and it can resolve the underlying object and return Option[T]. So for example, if I want to resolve the value as above with an OPath I can invoke:
val o = OPath.resolve[String](person, "addresses().shipping().line1()")
The value of "o" will be Some[String] representing value of line1 or None if any point in the hierarchy is not able to be resolved.

Now, back to properties. The PathProperty works with OPath instances (calling resolve like above simply resolves the value, but an OPath instance is a long-term reference to that path that receives events when anything changes). So if we wanted to create a property and know when the value of line1 in the shipping address has changed we could do the following:
val shippingLine1 = new PathProperty[String](OPath(person, "addresses().shipping().line1()"))
shippingLine1.listeners += shippingLine1Changed _

Your listener would look like this:
private def shippingLine1Changed(evt: PropertyChangeEvent[String]) = {
    ... shipping line1 has changed ...
}

Binding


I mentioned earlier that events were probably the most used feature in properties, but binding is likely a close second. The premise of binding is fairly simple. You have two values and you want one or both to replicate the value of the other. Newer frameworks like Flex and JavaFX make heavy use of binding and do a decent job of it. However, there's a lot that Sgine provides that they have no ability to do. Alas, I'm getting ahead of myself. Let's first take a look at a simple example. Consider the standard UI usage of binding. We have a CRUD app that manages people, so we have a text field that when updated needs to modify the name of the specific person we are working with. We must first modify our Person class to support binding:
import org.sgine.property.BindingProperty
import org.sgine.property.MutableProperty

class Person {
    val name = new MutableProperty[String] with BindingProperty[String]
}
Now, presuming we have a text field with signature like the following:
class TextField {
    val text = new MutableProperty[String] with BindingProperty[String]
}
We can simply take our Person's name and bind it to the text field's text property:
person.name bind nameField.text
Now any changes that occur to the nameField will automatically be applied back to person.name. This is the simple case and pretty much the extent to which most binding systems function. However, as I stated before, in Sgine binding support goes well beyond that.

The first problem you often run into with standard binding functionality is that you can only bind the same type of properties together. For example, in the previous case we were binding the name of a person to the text value of a text field. These both were String representations, but what if we wanted to do something like have an "age" property that is bound to a "birthday" property? We have an Int that wants to link up to a Calendar? This brings us to translation bindings.

Translation Binding


Translation binding is very similar to standard binding except there is a translation step that must occur to get the value ready for use in the target.

Lets look at the age / birthday example:
import java.util.Calendar

import org.sgine.property.BindingProperty
import org.sgine.property.MutableProperty

class Person {
    val age = new MutableProperty[Int] with BindingProperty[Int]
    val birthday = new MutableProperty[Calendar] with BindingProperty[Calendar]

    age bind(birthday, determineAge)

    private def determineAge(c: Calendar) = {
     if (c != null) {
         val now = Calendar.getInstance
         val age = now.get(Calendar.YEAR) - c.get(Calendar.YEAR)
         now.set(Calendar.YEAR, c.get(Calendar.YEAR))
         if (now before c) {
             age - 1
         } else {
             age
         }
     } else {
      -1
     }
    }
}
We simply bind birthday to age, but at the same time provide a function to convert from a Calendar to an Int. Now every time birthday changes, age gets updated.

Path-based Binding


As we've already discussed, OPath in Sgine represents an object-path to a value within a hierarchical structure. We've already seen it used to resolve values directly and with PathProperty. Now we're going to look at one of the most powerful uses of OPath, and that's for binding. Often you want to bind to a hierarchical value that may or may not exist at time of instantiation. The solution to this generally is to add a listener, to wait until it has been defined, and then add the binding. Later though, the reference structure may change or be set back to null and you find yourself with a binding to something that is no longer being used. With path-based bindings you can bind to a hierarchical structure and no longer concern yourself with the details of parts changing in-between. Every time the path changes the binding will be updated.

For example:
import org.sgine.path.OPath

import org.sgine.property.BindingProperty
import org.sgine.property.MutableProperty

class Person {
    val lastName = new MutableProperty[String] with BindingProperty[String]
    val spouse = new MutableProperty[Person] with BindingProperty[Person]
}
Now, consider that this person has stated they want their lastName to be bound to that of their spouse's. We could do this:
person.lastName bind person.spouse().lastName
But it's possible they are not yet married, and it's also possible that the spouse might change. If we do a path-based binding instead, no matter if they are married now or change spouses in the future, the binding will remain pointing to their spouse's lastName:
person.lastName bindPath OPath(person, "spouse().lastName()")
Though a little hard to grasp at first, the benefits of such functionality significantly reduce the amount of handling that must be added in order to deal with multi-level mutability.

Property Container


Properties by themselves are quite useful little beasts, but add PropertyContainer to this mix and the benefits multiply. One of the troubles you have with the standard bean scenario is introspecting the contents of that bean in order to find out what values it contains in order to make use of it. Inevitably Reflection is used to determine the fields or methods that make up that bean. PropertyContainer eliminates the need for manual Reflection.

The ability to know what properties exist for a specific instance can be very useful. Rather than pushing back the necessity to use Reflection onto the developer, PropertyContainer dynamically introspects the instance in order to determine what properties are available and by what name they can be referenced. For example:
import org.sgine.property.MutableProperty
import org.sgine.property.container.PropertyContainer

class Person extends PropertyContainer {
    val name = new MutableProperty[String]
}
Now, I can iterate over all the properties of my "person" with:
for (prop <- person.properties) {
    ...
}
I can also do a lookup of a property by name:
val name = person("name")
Another very useful feature to PropertyContainers is that they are also Listenable instances, so they can receive events. This gives you the ability to listen for events on the container and receive events for the children. See the following example:
import org.sgine.property.ListenableProperty
import org.sgine.property.MutableProperty
import org.sgine.property.container.PropertyContainer

class Person extends PropertyContainer {
    val name = new MutableProperty[String] with ListenableProperty[String] {
        override val parent = Person.this
    }
}
It's important to notice here the only revision that needed take place is that "name" provide a reference to the Person instance via the "parent" property. This is used to propagate the event up. This can allow a complete hierarchical structure to propagate all the way up to the top. Now we can add a listener with the following:
import org.sgine.event.EventHandler
import org.sgine.event.Recursion

import org.sgine.property.event.PropertyChangeEvent

val person = new Person()
person.listeners += EventHandler(propertyChanged, recursion = Recursion.Children)

private def propertyChanged(evt: PropertyChangeEvent[_]) = {
    ... property changed ...
}
The above example will be invoked if any child throws a PropertyChangeEvent. Finally, beyond the static PropertyContainer we also may need to add and remove properties dynamically. This is where MutablePropertyContainer comes in. MutablePropertyContainer, as the name suggests, allows dynamically adding and removing properties on the fly rather than relying on Reflection in order to determine names and references.

Dependent Properties

DependentProperty allows for the default value to point to another property instead of the initial value of that property. For example:
import org.sgine.property.DependentProperty
import org.sgine.property.MutableProperty

class Person {
    val name = new MutableProperty[String] with DependentProperty[String] {
        val dependency = Person.defaultName
    }
}

object Person {
    val defaultName = new MutableProperty[String]("Anonymous")
}
The value of person.name is defaulted to point to whatever the value of Person.defaultName is. Even if the value of "defaultName" should change after initialization it will continue to point to it until the value of the "name" property itself has been changed. This is particularly useful for stylization as it allows default styles to exist but without removing the ability to explicitly override.

AdvancedProperty

In the examples above there is a lot of mixing of traits to achieve the desired functionality, but in most cases there is no reason not to make all of this functionality available. For simplification the AdvancedProperty combines all the standard functionality that might be desired in a property without sacrificing performance. The traits that AdvancedProperty mixes in by default are:
  • MutableProperty
  • DepedentProperty
  • ListenableProperty
  • NamedProperty
  • BindingProperty
  • AnimatingProperty
  • EventDelegationProperty
  • CombiningProperty
Simply instantiating AdvancedProperty is much easier than concerning yourself with every possibly trait that might be needed on a given property and in general there's nothing lost by doing so. AdvancedProperty does not contain all the available traits for properties, but additional traits can be mixed in as needed. To use AdvancedProperty is quite simple:
import org.sgine.property.AdvancedProperty

class Person {
    val name = new AdvancedProperty[String]("")
}
This gives you all the functionality you are likely to need in "name". If you are taking advantage of PropertyContainer you can use the following signature instead:
import org.sgine.property.AdvancedProperty
import org.sgine.property.container.PropertyContainer

class Person extends PropertyContainer {
    val name = new AdvancedProperty[String]("", this)
}

Conclusion

This has been a lengthy tutorial about the functionality that is provided in Sgine's Property system, but hopefully provides the foundation necessary for you to start taking advantage of Properties in your projects. The focus of Sgine is very much toward 3d engine development, but much of the foundation is geared toward general usage. To that end it is my desire that functionality such as the Property system may be leveraged in diverse systems that may have nothing to do with graphical programming at all. Though this was a lengthy examination of properties it did not go over every feature and trait available in Sgine. For additional information please refer to the ScalaDocs for Sgine.

Beans Should Be Deprecated - The Future of Object Architecture With Properties (Part 1 of 2)

In my previous post I discussed the case for Properties and the basics of how they work. In this post I will dive into the specific workings of Properties in Sgine and how to use the various features it provides.

This post is all about Properties in Sgine for use primarily with Scala. However, I know many people, for whatever reason, are still using Java. For those people I would like to point you to this post I made a year previous regarding Properties in Java and the implementation of Properties in the open-source project xjava.

Basics


In Sgine Property is a trait that extends Function0[T] (getter) and Function1[T, Property[T]] (setter). This basic foundation allows better compliance of use along with functional delegation. Here's a simple example class implementation of a Property:

import org.sgine.property.Property

import scala.reflect.Manifest

class SimpleProperty[T](protected implicit val manifest: Manifest[T]) extends Property[T] {
    private var _value: T = _

    def apply() = _value

    def apply(value: T): Property[T] = {
        _value = value

        this
    }
}

This is relatively straight-forward to the way properties were discussed in the previous article with one glaring difference. The use of Manifest is a very cool feature in Scala that Sgine takes extensive use of. If you're not familiar with Manifest I suggest reading more here. If you are familiar with erasure Generics in Java you'll know that Generic type information is not available at runtime, it is purely a compile-time feature to maintain static-typing. However, there are many cases where having that information at runtime is extremely useful and that's exactly what scala.reflect.Manifest gives you. Fortunately though, the only case in which this knowledge will be necessary is if you need to extend Properties, which will never be necessary for the majority of developers.

Now that we have our SimpleProperty class we want to use it:

class Person {
    val name = new SimpleProperty[String]()
}

val person = new Person()
person.name("John Doe")
val name = person.name()

Now that we understand how easy it is to create properties, lets put that knowledge aside for now. As I stated, you'll probably never need to do this, but hopefully this helps you understand how easy it is to do if you should desire to do so.

Moving on, Sgine already supplies all the functionality demonstrated in SimpleProperty in org.sgine.property.MutableProperty. This class is the base for most of the standard mutable Property functionality in Sgine.

The above example requires the creation of your own Property class, but you can use the built-in MutableProperty:

import org.sgine.property.MutableProperty

class Person {
    val name = new MutableProperty[String]()
}

val person = new Person()
person.name("John Doe")
val name = person.name()

Because setting name via apply:
person.name("John Doe")
Is not the most intuitive to realize it is setting the value of the Property, there are a couple additional convenience methods in Property that invoke the same functionality but may be more readable in code.

The first is ":=" so you can write:
person.name := "John Doe"
This is what I personally prefer when setting the value of a Property as it is quite clear that I am intentionally modifying the value of person.name.

Additionally you can use "value" for both getting and setting:
person.name.value = "John Doe"    // Setter
val name = person.name.value    // Getter

Usage aside, Properties are quite simple in concept and though every implementation has its own details you must understand, you hopefully have a good foundation to start with. In the next sections we will be building upon this foundation with specific functionality that Sgine provides to make Properties that much more powerful and effective.

Events


Events in properties are arguably the most useful feature in any properties framework and definitely the most requested feature to any properties system. Sgine provides a complete Event system that is general purpose apart from properties, but is utilized in the properties system to provide a simple, yet complete event system.

The relevant trait we'll use for event handling is ListenableProperty. Here's a sample of setup:
import org.sgine.property.ListenableProperty
import org.sgine.property.MutableProperty

class Person {
    val name = new MutableProperty[String] with ListenableProperty[String]
}

Notice we simply had to mix-in the ListenableProperty to our MutableProperty and now we've got event support in our "name" property.

Here's an example to listen for change of "name":
val person = new Person()
person.name.listeners += nameChanged _

Notice here that we simply reference the "listeners" instance of "name" and invoke "+=" to add our listener.

The definition of our listener "nameChanged":
private def nameChanged(evt: PropertyChangeEvent[String]) = {
    println("Name Changed!")
}

Like I stated previously, the event is extremely powerful and can do some really awesome things, but for the purposes of this tutorial we'll keep it to simply mentioning that we can reference as our "listener" any method/function that takes an Event and returns Unit. In the above code we are explicitly wanting to receive PropertyChangeEvents for Strings and the internal event system will filter all other events from getting to our listener method.

Now every time we change "name" an event will be thrown to "nameChanged".

Another tutorial needs to be written in the future to explain the features and functionality provided in the event system, but you now have the basic knowledge to listen for events in properties.

Delegate Properties


DelegateProperty is an alternative base property to MutableProperty. Instead of maintaining a value internally within the property itself, it delegates to outside functions for getting and setting values. This is most useful when dealing with existing code. Consider the following example:
import org.sgine.property.DelegateProperty

class Window {
    private val frame = new javax.swing.JFrame()

    val title = new DelegateProperty[String](frame.getTitle _, frame.setTitle _)
}
This example is a simple wrapper around Swing's JFrame, and though we could create a title property, listen to changes, and then apply them to the underlying JFrame it would be quite a bit of effort (and a lot more code) to do so. Instead, since all we want to do is replicate the functionality from JFrame's getTitle/setTitle methods we can just delegate to and from those methods. This allows us to utilize all the features of properties while relying on existing functions.

This can also be useful for more complex scenarios where determining the value requires some internal processing. You simply specify your getter to point to a private method/function that does the work and you're finished. The setter function is an optional parameter and if unspecified will throw an UnsupportedOperationException if invoked.

Filtering


FilteredProperty provides the ability to modify an incoming value before it gets applied to the property itself. See the following example usage:
import org.sgine.property.FilteredProperty
import org.sgine.property.MutableProperty

class Person {
    val name = new MutableProperty[String] with FilteredProperty[String] {
        val filter = (s: String) => if (s == null) "" else s
    }
}
This simple example converts nulls to a blank String. This allows you to work with "name" without ever being worried about its value being null.

Another usage of this would be to disallow specific values by throwing an Exception:
import org.sgine.property.FilteredProperty
import org.sgine.property.MutableProperty

class Person {
    val name = new MutableProperty[String] with FilteredProperty[String] {
        val filter = (s: String) => if (s == null) throw new NullPointerException("This property does not allow null!") else s
    }
}
Now, this is creating boiler-plate code, and we don't like boiler-plate code. Lets do this in a more reusable way:
import org.sgine.property.FilteredProperty

trait NullsAreBadFilteredProperty[T] extends FilteredProperty[T] {
    val filter = (value: T) => {
        if (value == null) {
            throw new NullPointerException("This property does not allow null!")
        } else {
            value
        }
    }
}
Now I can simply mix-in my new trait wherever I want to disallow nulls:
import org.sgine.property.MutableProperty

class Person {
    val name = new MutableProperty[String] with NullsAreBadFilteredProperty[String]
}

Transactional Properties


TransactionalProperty is the property equivalent of a database transaction. When a the property is created it maintains a reference to its initial value and the current value. At any time the value can be committed in order to roll forward the initial value to the current value or it may be reverted in order to roll back the current value to the initial value. Finally, when a TransactionalProperty is committed a PropertyTransactionEvent is thrown for the property that represents the original value and the new value.
import org.sgine.property.MutableProperty
import org.sgine.property.TransactionalProperty

class Person {
    val name = new MutableProperty[String]("") with TransactionalProperty[String]
}

Simple usage:
val person = new Person()
person.name := "John Doe"
person.name.revert() // Reverts the value back to ""
person.name := "Jane Doe"
person.name.commit() // Commits "Jane Doe"

Animation


Animation may be a little confusing of a name here since we're dealing with properties and not images, but AnimatingProperty works with a PropertyAnimator to allow "animation" from the current value to the newly applied value over time. Obviously this is of primary benefit in the case of a user-interface, but can be applicable to other uses as well.

Here is a simple example to animate linearly from 0.0 to 5.0 over five seconds:
import org.sgine.property.AnimatingProperty
import org.sgine.property.MutableProperty
import org.sgine.property.animate.LinearNumericAnimator

class Location {
    val x = new MutableProperty[Double](0.0) with AnimatingProperty[Double]
    x.animator = new LinearNumericAnimator(1.0)    // Move 1.0 per second
}

val location = new Location()
location.x := 5.0    // Begin animation from 0.0 to 5.0
location.x.waitForTarget()    // Convenience method to wait for target value to be reached
We're using LinearNumericAnimator, a built-in animator to work with Double properties, to animate 1.0 per second. If you are familiar with Flex or JavaFX this is similar in purpose to what they call "Effects". However, in those frameworks an Effect is defined apart from the property being modified and is simply activated upon it. Though this means writing explicit code for every movement you wish to make it is perfectly acceptable most of the time. However, this does create the potential problem of multiple effects being enacted on the same value at the same time. For example, a box is displayed in the center of the screen with two buttons. The first button moves the box to the left side of the screen and the second button moves the box to the right side of the screen. This is perfectly fine until you try hitting one right after another. If you don't add explicit support to cancel the first effect you will run into what I call "effect fighting". This is the scenario where two effects are trying to modify the same property to two different targets. The visual result of the box example is the box jumping to the left, then the right, then left, and so on with each effect attempting to update the position. Particularly in the case of Sgine, being a fully multi-threaded and thread-safe 3d engine this was of great concern. PropertyAnimator simplifies and abstracts the process, preventing effect fighting from occurring.

Consider another scenario. In the Location class we created above, if it were being managed in a layout manager of some sort, the layout manager wouldn't necessarily know anything about animation. By virtue of the fact that the layout manager modifies the "x" property, instead of immediately jumping to the new position, animation would occur.

LinearNumericAnimator is just one built-in PropertyAnimator. EasingNumericAnimator similarly works with Double properties, but uses easing functions instead of linear motion. Numbers are not the only things that can be animated though. The EasingColorAnimator works similarly to EasingNumericAnimator, but works on Colors. At the time of this writing those are the only built-in PropertyAnimators, but writing your own PropertyAnimator is a simple matter of providing your own implementation of the following method signature:
def apply(current: T, target: T, elapsed: Double): T

Easings with animation is generally more elegant than simple linear animation. Sgine has a full listing of easing functions supported:
  • BackIn / BackOut / BackInOut
  • BounceIn / BounceOut / BounceInOut
  • CircularIn / CircularOut / CircularInOut
  • CubicIn / CubicOut / CubicInOut
  • ElasticIn / ElasticOut / ElasticInOut
  • ExponentialIn / ExponentialOut / ExponentialInOut
  • LinearIn / LinearOut / LinearInOut
  • QuadraticIn / QuadraticOut / QuadraticInOut
  • QuarticIn / QuarticOut / QuarticInOut
  • QuinticIn / QuinticOut / QuinticInOut
  • SineIn / SineOut / SineInOut

This concludes part 1 of this tutorial. Please continue on to part 2 for the conclusion.
Scala Engine for high-performance interactive applications.